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A B S T R A C T

Convert Image Communication (CIC) is a promising technology to protect the privacy of images. Recently,
the emergence of robust CIC resistant to JPEG compression has gained due to the widespread use of JPEG
compression in image communication. This paper introduces a Robust image hiding network with Frequency
and Spatial Attentions (RFSA) to implement robust CIC. RFSA can hide an image within another image with
high robust. It incorporates multiple image attentions corresponding to imperceptibility, recovered image
quality, and resistance to JPEG compression, which ensure that secret images are hidden within regions
that cause little distortion and can well withstand JPEG compression. Additionally, two encoders, that is, a
frequency encoder and a spatial encoder, are mixed to adaptively embed secret images across both frequency
and spatial domains. Experimental results demonstrate that the proposed scheme not only maintains high
image quality and capacity but also exhibits exceptional resistance to JPEG compression compared to other
state-of-the-art image hiding methods. The average Peak Signal-to-Noise Ratio (PSNR) of the recovered image
remains at 24.96 dB even under JPEG compression with a quality factor of 55.
1. Introduction

The privacy of images has garnered significant attention in recent
years. Convert Image Communication (CIC) is a promising technol-
ogy to protect the privacy of images. It enables the communication
confidentiality of an image by discreetly concealing it within other mul-
timedia data, usually another public image [1,2]. Only the authorized
recipient can correctly recover it.

CIC can be achieved by traditional steganographic techniques,
which effectively hide secret data within the given cover images
with limited distortion [3–5]. Embedding algorithms such as pixel
matching [3], Syndrome-Trellis Codes (STC) [4], Steganographic Polar
Codes (SPC) [5] have been manually designed to this end. However,
these algorithms impose strict limitations on the embedding capacity,
typically up to 1 bit per pixel. With the rapid development of deep
learning, an increasing number of learning-based CIC schemes have
emerged. The pioneer work suggested by Baluja [6] employed a deep
network model to achieve color image hiding. After that, Yu et al. [7]
proposed an Attention Based Data Hiding framework (ABDH), which
introduced attention modules to find inconspicuous areas for secret in-
formation hiding. Liu et al. [8] utilizes a joint compression autoencoder
to address the image mapping in potential space for high-quality image
concealment. Invertible networks have been frequently used recently
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to achieve high visual quality of stego and recovered images [9,10].
While the aforementioned methods exhibit impressive imperceptibility
and capacity, they fail to account for the pervasive presence of JPEG
compression noise in the transmission channel, leading to the fragility
of CIC.

To enable the CIC in lossy compression channels, a scheme must be
able to withstand the impact of JPEG compression. A series of learning-
based data hiding schemes have been proposed for this purpose. Ah-
madi et al. [11] devised a differentiable approximation algorithm for
JPEG and trained it with selected attack types with assigned proba-
bilities. Zhang et al. [12] developed a pseudo-differentiable method
for JPEG compression to address the non-differentiability problem. Jia
et al. [13] proposed a method to enhance robustness by selecting
one noise layer from multiple noise environments for small batch
images. However, they have a small capacity and can only hide secret
information at the bit level. By integrating self-supervised learning
and adversarial training, Zheng et al. [14] proposed a Composition-
Aware Image Steganography (CAIS), which achieved the generation
of steganographic images with increased capacity and enhanced ro-
bustness. Ying et al. [15] enhanced the JPEG compression simulator
based on [13] and improved robustness through a progressive recovery
strategy. Luo et al. [16] employed visual perception loss and two-stage
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training to reduce noise interference in invertible networks. However,
many of them are learned in the spatial domain, which may be sensitive
to the low-frequency sub-band and some salient subbands, and thus
limits their robustness [17,18].

On the other hand, traditional hiding methods frequently opt to
embed data in more resilient areas to enhance robustness. Many of
them embed message bits in the transform domain to balance imper-
ceptibility and robustness [19–21]. Zhang et al. [19] created resilient
regions by utilizing Discrete Cosine Transform (DCT). Sun et al. [20]
also embed message bits in the DCT domain. Further, a CNN based
method is suggested to select a resilient domain. Singh et al. [21] used
a chaotic kbest gravitational search algorithm in DCT and Singular
Value Decomposition (SVD) domain. Although these methods have
limited capacity, the concept of embedding in the frequency domain
is promising. We can impose the data hiding network to embed secret
images in the frequency domain to enhance robustness against JPEG
compression. Additionally, attention allows the network to focus on
important features [22]. This concept is similar to embedding region
selection. Various attentions have been developed. Zhu et al. [23]
proposed grouping-aggregation and hybrid coding for channel attention
to reduce information loss caused by convolutional dimensionality re-
duction. Obeso et al. [24] focused on external visual saliency attention
as new complementary to help network optimization. They have been
successfully applied it on image classification, object detection, etc.
Therefore, We expect to design different attentions tailored to different
CIC requirements.

This paper presents a robust CIC framework with frequency and
spatial attentions (RFSA). RFSA integrates frequency and spatial data
hiding, and incorporates multiple attentions to effectively extract ro-
bust features across diverse domains. This strategy ensures that the en-
coder can adaptively conceal the secret image. Specifically, it contains
a frequency encoder module and a spatial encoder module. Addition-
ally, an attention generation module is introduced to generate distinct
attention masks for the encoders. The contributions of this paper can
be summarized as follows.

∙ The proposed scheme extends the embedding domain to the fre-
quency domain, leveraging the intrinsic distortion on DCT coeffi-
cients caused by JPEG compression to enhance the corresponding
robustness.

∙ Multiple attention masks are generated based on JPEG compres-
sion influence and the human visual system. These masks guide
the network to achieve a good balance among imperceptibility,
recovered image quality, and resistance to JPEG compression.

∙ Extensive experimental results demonstrate that the stego images
generated by our scheme present high visual quality and exhibit
strong resilience to JPEG compression.

The rest of this paper is organized as follows. In Section 2, we
review robust hiding methods at both the message and image levels. In
Section 3, we describe the proposed method and loss function in detail.
Section 4 shows the experimental setup and verifies the effectiveness of
the proposed method. The conclusion is presented in Section 5.

2. Related work

In recent years, significant advancements have been achieved in
learning-based robust covert communication. These previous methods
can be categorized broadly into two groups depending on the payload
of covert communication.

2.1. Robust convert communication of binary message

To achieve accurate message recovery in a lossy channel, several
robust data hiding schemes for binary messages have been proposed.
One effective method to improve the robustness is to insert a distortion
2

layer during the training process. The distortion layer was introduced
earlier by Zhu et al. [25]. Zhang et al. [12] further designed it to
make the network compatible with non-micro distortions. Liu et al. [26]
utilizes a multilayer perceptron for redundant mapping of the message
and combines it with a distortion layer to fine-tune the encoder. Bui
et al. [27] combined multiple noises and a single noise in a specific
ratio to form a distortion layer. Furthermore, methods that leverage
attention mechanisms and frequency coefficients to enhance robustness
have progressively emerged. Tan et al. [28] and Fang et al. [29] under-
went training on attentional mechanisms to enhance the resilience of
images containing secrets. Lan et al. [30] employed invertible networks
to embed confidential information into DCT coefficients, effectively
enhancing both robustness and security.

In order to achieve good robustness, the aforementioned methods
usually encode the hidden messages with error correction codes, and
repeatedly embed them into the cover image. This inevitably limits
the embedding capacity of the methods. Despite notable robustness im-
provements, this strategy falls short of CIC’s image-level robust hiding
requirements. Nevertheless, the introduction of a distortion layer and
attention mechanism offers promising avenues for enhancing robust-
ness. In our method, we employ the attention to concentrate embedding
energy in more robust regions while incorporating a distortion layer to
enhance robustness performance further.

2.2. Robust convert communication of image message

Baluja [6] pioneered the application of deep neural networks for
concealing color images. However, robust CIC remains challenging due
to the deep neural networks’ vulnerability to intermediate distortion.
To enhance robustness, ABDH [7] fine-tunes attacked images for ad-
versarial training. Zhang et al. [31] proposed a Deep Adaptive Hiding
Network (DAH), which employed deep frequency features and added
a perturbation layer to improve robustness. Luo et al. [16] employed
a two-stage training approach in invertible networks to mitigate noise
interference during the backpropagation process. Nevertheless, the ro-
bustness of these methods is not particularly strong. Luo et al. [32]
proposed a patch-level image hiding method that uses small patch
blocks as embedding locations to enhance robustness. However, the
patch image size is only 1∕16 of the carrier image. Shang et al. [33] em-
ployed invertible networks to conceal a secret image within quantized
DCT coefficients. Cao et al. [34] realized robust CIC using frequency
domain channel attention. However, the hidden secret images in them
are grayscale.

It can be found that the capacity of these schemes remains inade-
quate. To compensate for this limited capacity, these methods resort to
reducing the sizes or color channels of the hidden images. Conversely,
our proposed scheme strives to embed a full-size color secret image,
necessitating a deeper investigation into the embedding potential of
image hiding networks. To this end, we integrate representations from
both the frequency and spatial domains, aiming to achieve an optimal
balance between capacity, imperceptibility, and robustness.

Both [32] and [34] utilized the Universal Deep Hiding (UDH) [35]
framework to attain satisfactory imperceptibility. Compared to De-
pendent Deep Hiding (DDH), UDH hides messages in an unrelated
manner to the cover image, resulting in stego images with high qual-
ity [35]. Unfortunately, the original UDH is not robust. In this proposed
scheme, we extend the UDH framework to maintain high capacity and
imperceptibility while also ensuring good robustness.

3. Method

The proposed scheme delves into the frequency domain to embed
secret images. Previous methods, as cited in [30,33,34], have demon-
strated that concentrating secret embedding within the frequency do-
main enhances the visual quality of stego or recovered images. How-
ever, our approach goes beyond mere image quality, aiming to achieve
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Fig. 1. The architecture of RFSA.
Table 1
Symbol definition.
Symbols Descriptions

𝑋 cover image in RGB model
𝑋𝑦𝑐𝑏𝑐𝑟 cover image in YCbCr model
𝑋𝑑𝑐𝑡 DCT coefficients of 𝑋𝑦𝑐𝑏𝑐𝑟

𝑀 𝑗𝑝𝑔 JPEG attention mask
𝑀 𝑗𝑛𝑑 JND attention mask
𝑀𝑎𝑏𝑑ℎ ABDH attention mask

𝑆 secret image
𝑅 recovered image
𝑌 stego image
𝑌 𝑎𝑡𝑘 JPEG compressed image

robustness against JPEG compression. Recognizing that the information
loss in JPEG compression primarily stems from the quantization of
DCT coefficients, we identify stable regions within these coefficients.
It is expected that the inherent linkage between DCT domain repre-
sentation and JPEG compression will facilitate a good balance between
robustness and visual quality.

This section describes the proposed image hiding network for robust
CIC, named RFSA. It is an end-to-end network that aims to hide a secret
image within another image while achieving high imperceptibility,
recovered image quality, and robustness against JPEG compression. For
convenience, we summarize the symbols used in Table 1.

3.1. Overview

Fig. 1 displays the proposed RFSA framework, which consists of
three components: the attention generation module, the frequency and
spatial encoder module, and the extraction module. During the hiding
process, a cover image 𝑋 and a secret image 𝑆 serve as the inputs.
The attention generation module processes 𝑋 to generate multiple
attention masks 𝑀 ⋅. Subsequently, 𝑋, 𝑀 ⋅, and 𝑆 are fed into the
frequency and spatial encoder module to obtain the stego image 𝑌 .
The extraction network can then retrieve the recovered image 𝑅 from
𝑌 or JPEG compressed stego image 𝑌 𝑎𝑡𝑘. The frequency transform
layer in the frequency encoder module transforms 𝑋 to its frequency
representation.
3

3.2. Attention generation module

Attention mechanisms can guide neural networks to focus on the
most important features for a given task [22–24]. Inspired by this
concept, the attention generation module generates attention masks
to incorporate secret information into the feature maps of the cover
with desired attributes such as robustness and imperceptibility. Since
the hiding network should balance imperceptibility, recovered image
quality, and resistance to JPEG compression, distinct attention masks
should be generated to satisfy individual requirements. We explore
three types of masks as shown in the top left of Fig. 1. They are the
JPEG attention mask 𝑀 𝑗𝑝𝑔 , the JND attention mask 𝑀 𝑗𝑛𝑑 , and the
ABDH attention mask 𝑀𝑎𝑏𝑑ℎ. The first two masks enhance robustness,
while the third mask emphasizes imperceptibility.

3.2.1. JPEG attention mask
This mask aids in enhancing the robustness against JPEG compres-

sion. It guides the encoder to embed information in the features that
are less affected by JPEG compression. This mask is defined in the DCT
domain, as JPEG compression is also performed in this domain.

We apply JPEG compression with quality factor 𝑄𝐹 ∈ (50, 100) to
the cover image 𝑋 to generate a JPEG compressed image 𝑋𝑎𝑡𝑘. Subse-
quently, the corresponding residual image is collected by subtracting
𝑋𝑎𝑡𝑘 from 𝑋. Residual image coefficients with larger values indicate
weaker resistance to JPEG compression, and, thus, a higher risk of
secret information deletion. Therefore, we should assign a small value
to these sensitive areas. During the training process, the QF is randomly
selected within a given range, and set to be consistent with the JPEG
compression attack module.

To address the dimensional inconsistency of the difference values
and guarantee the rationality of the attention features, we normalize
the residual image collection through standardization and normaliza-
tion. Subsequently, a softmax function is utilized to transform the
normalized residuals into a JPEG attention mask 𝑀 𝑗𝑝𝑔 ∈ [0, 1]. This
process can be formed as:

𝑀 𝑗𝑝𝑔 = 𝜎
(

(
(

𝑋 −𝑋𝑎𝑡𝑘))
)

(1)

where 𝜎 is the sigmoid function multiplied by a constant factor, and
 and  represent the standardization and normalization processes,
respectively.
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3.2.2. JND attention mask
This mask further balances imperceptibility and embedding strength.

Just Noticeable Distortion (JND) defines the maximum level of image
distortion that the human eye cannot perceive, reflecting the tolerance
of the human visual system to changes in images. It has been widely
used in traditional robust watermarking [36]. It is expected that the
designed JND attention mask 𝑀 𝑗𝑛𝑑 can transfer this characteristic to
the hiding network.

The mask is also defined in the DCT domain for the same reason
as the JPEG attention mask. To maintain consistency in dimensions
and sizes between the mask and DCT coefficients, we use the 4 × 4
sized JND model introduced by Watson [36] as the backbone. Pre-
cisely, visibility threshold, luminance, and contrast masking factor are
calculated using cover image 𝑋𝑑𝑐𝑡 to obtain the JND coefficients. Subse-
quently, through residual calculations, standardization, normalization,
and other computations, JND attention mask 𝑀 𝑗𝑛𝑑 is generated. This
process can be formed as:

𝑋𝑗𝑛𝑑 = 𝑡 ⋅ 𝑓 𝑙𝑢𝑚 ⋅ 𝑓 𝑐𝑜𝑛 ⋅𝑋𝑑𝑐𝑡 (2)

𝑀 𝑗𝑛𝑑 = 𝜎
(

(
(

𝑋 −𝑋𝑗𝑛𝑑))
)

(3)

Where 𝑓 𝑙𝑢𝑚 is the modulation factor from the luminance masking,
𝑓 𝑐𝑜𝑛 is another modulation factor from the contrast masking, and 𝑡
refers to the threshold. 𝑓 𝑙𝑢𝑚, 𝑓 𝑐𝑜𝑛 and 𝑡 are calculated as follow:

𝑡𝑖,𝑗 =

(

∑

𝑘

|

|

|

|

|

𝑐𝑖,𝑗 − 𝑅[𝑐𝑖,𝑗,𝑘∕𝑞𝑖,𝑗 ] ⋅ 𝑞𝑖,𝑗
𝑓 𝑐𝑜𝑛
𝑖,𝑗,𝑘

|

|

|

|

|

4)1∕4

(4)

𝑓 𝑙𝑢𝑚
𝑖,𝑗,𝑘 = 1

2
⋅ 𝑞𝑖𝑗 ⋅ (𝑐0,0,𝑘∕𝑐0,0)0.649 (5)

𝑐𝑜𝑛
𝑖,𝑗,𝑘 = 1

2
𝑀𝑎𝑥

[

𝑓 𝑙𝑢𝑚
𝑖,𝑗,𝑘,

|

|

|

𝑐𝑖,𝑗,𝑘
|

|

|

𝑤𝑖,𝑗
⋅ 𝑓 𝑙𝑢𝑚

𝑖,𝑗,𝑘
1−𝑤𝑖,𝑗

]

(6)

𝑤𝑖,𝑗 =

{

0 𝑖 = 0, 𝑗 = 0

0.7 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7)

where 𝑅 denotes the rounding, 𝑐𝑖,𝑗,𝑘 is the component of the 𝑘th
DCT block, 𝑐0,0 is the DC coefficient corresponding and 𝑞𝑖,𝑗 is the
quantization matrix.

3.2.3. ABDH attention mask
This mask improves imperceptibility by using visual attention that

simulates the human attention mechanism. We employ the ABDH atten-
tion mask 𝑀𝑎𝑏𝑑ℎ suggested by [7]. It implicitly focuses on specific areas
f the image, aligning the feature weights of the intermediate network
ith human attention emphasis. To generate the ABDH attention mask
𝑎𝑏𝑑ℎ, we utilize the first two layers of ResNet50 [37] as the backbone

etwork and input the cover image 𝑋 as the input.

.3. Frequency and spatial encoder module

The structure of this module is shown on the right side of Fig. 1,
here the orange and green blocks represent the convolutional and

ranspositional convolutional layers with the kernel size of 4 × 4,
espectively, and the fusion layer is a convolutional layer with the
ernel size of 1 × 1. The frequency and spatial encoder module is
omposed of three sub-networks: frequency encoder, spatial encoder,
nd mixer. Both the frequency encoder and the spatial encoder have
similar structure with UDH. The frequency encoder hides the secret

mage 𝑆 within the DCT coefficients, while the spatial encoder hides 𝑆
ithin the spatial pixels. The mixer is composed of three convolution

ayers with the kernel size of 4 × 4. It adaptively integrates frequency
nd spatial embedding results.

The convolutional structure is hierarchical and can extract features
t various levels, perceiving detailed information in shallow layers and
tructural information in deeper layers. Our objective is to dynamically
xtract the essential frequency information from different depths of
he network. As a result, the frequency encoder employs a parallel U-
et [38] structure as the network backbone. This approach dynamically
4

fuses essential information from 𝑆 and attention masks 𝑀 ⋅, leveraging
he design of Gradual Depth Extraction from [31].

In the frequency encoder, secret image 𝑆, together with generated
𝑗𝑝𝑔 and 𝑀 𝑗𝑛𝑑 , are used as inputs and fed into the network. During

he encoding stage, the frequency feature information of the mask and
ecret image is extracted from different depths through the parallel
etwork structure. The feature information is cross-shared during the
ecoding stage, progressively fusing details and structural features from
ifferent scales of the parallel network.

In the spatial encoder, our focus is on capturing the spatial position
nformation of the secret image 𝑆. To avoid multiple convolution
omputations on the cover image 𝑋 and prevent the loss of high-
requency details, we draw inspiration from [35] and maintain the
tilization of the U-Net as the network backbone. The input image
nd 𝑀𝑎𝑏𝑑ℎ are directly combined and fed into the spatial encoder to
xtract and fuse the required information. Multiple convolution and
inear modules are applied to the final output in the mixer.

.4. Extraction module

This module recovers the secret image 𝑅 from stego image 𝑌
r JPEG compressed stego image 𝑌 𝑎𝑡𝑘. It simply superposes 5 Conv-
nstanceNorm-ReLU blocks, each utilizing 4 × 4 convolution operations
nd kernel size.

.5. Frequency transform layer

The frequency transform layer in the frequency encoder transforms
he cover image 𝑋 to the frequency representation, producing DCT
oefficient tensor of the same size as that of 𝑋. Specifically, 𝑋 is
irst transformed to the YCbCr color space 𝑋𝑦𝑐𝑏𝑐𝑟 ∈ R(3,ℎ,𝑤), where

and 𝑤 are the height and width of the image. We then perform
lock-DCT using a 4 × 4 sliding window, obtaining the DCT frequency
oefficients 𝑋𝑑𝑐𝑡 ∈ R(3, ℎ4 ,

𝑤
4 ,4,4). Empirically we find that the convolution

receptive field of the subsequent encoder should stride over different
DCT channels so that it can map the secret information in the frequency
domain well. As a result, we reshape it to form 𝑋𝑑𝑐𝑡 ∈ R(3,𝐻4 ×4,𝑊4 ×4), as
shown in the left-lower of Fig. 1.

3.6. Loss functions

The overall objective loss function 𝑡𝑜𝑡𝑎𝑙 consists of four compo-
ents: the hiding loss ℎ and the recovery loss 𝑟 to ensure the hiding
erformance, the perceptual loss 𝑝 and the frequency loss 𝑓 to
nhance stego image quality.

iding loss. The hiding process should produce a stego image that is
ndistinguishable from the cover image. Toward this goal, the hiding
oss is defined as:

ℎ(𝜃) =
𝑁
∑

𝑛=1
𝓁ℎ

(

𝑋, 𝑌
)

(8)

here 𝜃 represents the network parameters, 𝑁 is the number of training
amples, and 𝓁ℎ is the difference between the cover image 𝑋 and the
tego image 𝑌 , which can be 𝐿1 or 𝐿2 norm.

ecovery loss. The extraction process should recover the secret image
rom the generated stego image. Consequently, the recovery loss is
efined as:

𝑟(𝜃) =
𝑁
∑

𝑛=1
𝓁𝑟
(

𝑆,𝑅
)

(9)

Similar to 𝓁ℎ, 𝓁𝑟 measures the difference between the recovered image

𝑅 and the ground-truth secret image 𝑆.



Pattern Recognition 155 (2024) 110691X. Zeng et al.

c
c
t
T



W

F
b
i



w

T
f



W

4

4

I
d
t
p
N
(
o
t
u
𝜆

B
i
o
F
t
s

E
f
R
m
D
a
b
i
m
r
P

4

s
s
c
o

c
o

4

d
r
d
s
t
e

Perceptual loss. We introduced perceptual loss in the hiding and re-
overy processes to restrict the visual perception gap between the
over/stego and secret/recovered image pairs. It utilizes the 𝐿2 dis-
ance of intermediate features of a pre-trained VGG16-Network [39].
he perceptual loss is written as:

𝑝(𝜃) =
|

|

|

|

|

|

𝛷3(𝑋) −𝛷3(𝑌 )
|

|

|

|

|

|

2

2

+ |

|

|

|

|

|

𝛷3(𝑆) −𝛷3(𝑅)
|

|

|

|

|

|

2

2
(10)

here 𝛷𝑖 represents the 𝑖th layer of the pre-trained VGG16 network.

requency loss. We extend the perceptual loss to the frequency domain
y asking for the similarity between DCT coefficients of cover and stego
mages. The frequency loss is calculated by:

𝑓 (𝜃) =
𝑁
∑

𝑛=1
𝓁𝑓

(

𝑋𝑑𝑐𝑡, 𝑌 𝑑𝑐𝑡
)

(11)

here 𝓁𝑓 measures the difference in DCT domain.

otal loss function. The final loss function of the entire network is
ormed as

𝑡𝑜𝑡𝑎𝑙 = 𝜆1ℎ + 𝜆2𝑐 + 𝜆3𝑝 + 𝜆3𝑓 (12)

here 𝜆1, 𝜆2, 𝜆3, and 𝜆4 are the weight factors to balance the loss term.

. Experimental results

.1. Experimental setting

mplementation details. We train and test our network on the COCO
ataset, randomly selecting 5000 pairs of cover/secret images as the
raining set and 1000 pairs of cover/secret images as the test set. The
roposed RFSA is implemented using PyTorch and accelerated using
vidia RTX 3090 GPU. We employ the Adam optimizer with 𝛽 =
0.5, 0.999) and a learning rate starting from 0.0001. The total number
f training epochs is set to 200. The input images are uniformly cropped
o a size of 256 × 256, and the batch size is set to 5. The weight factors
sed in Eq. (12) are experimentally set as 𝜆1 = 𝜆2 = 1, 𝜆3 = 0.75, and
4 = 1.25.

enchmarks. To validate the effectiveness of our scheme, we compared
t with existing CIC schemes that hide color images into another image
f equal size, including ABDH [7], UDH [35], CAIS [14], and DAH [31].
or a fair comparison, we retrained and evaluated these schemes using
he same dataset as ours, and the parameters followed the default
ettings mentioned in those references.

valuation metrics. Four metrics are used to measure the image quality
or cover/stego and secret/recovered image pairs: Peak Signal-to-Noise
atio (PSNR) and Structural Similarity Index (SSIM), which are com-
only used objective evaluation metrics, as well as Average Pixel
ifference (APD) calculated using 𝐿1 norm, and Learned Perceptual Im-
ge Patch Similarity (LPIPS) [40]. Higher values of PSNR/SSIM indicate
etter image quality, while lower values of APD/LPIPS indicate better
mage quality. In the following experimental results, -C represents the
etrics on the cover/stego image pairs (e.g., APD-C, PSNR-C), and -S

epresents the metrics on the secret/recovered image pairs (e.g., APD-S,
SNR-S).

.2. Performance without distortion

We test the proposed scheme on the clean cover images in the test
et. Fig. 2 provides a visual comparison of our RFSA with four other
chemes: ABDH, UDH, CAIS, and DAH. We zoom in on the stego and re-
overed images to observe their intricacies and compare them with the
thers. It can be observed that, even in regions with intricate textures,
5

the stego and recovered images generated by our scheme exhibit re-
markable visual similarity to the originals, preserving their fine details.
Additionally, we examine the embedding distortion by displaying a
magnified version of the cover image’s difference with the stego image.
As shown in Fig. 2, the contrast reveals that the difference obtained by
the compared schemes reflects the details of cover images, indicating a
detail loss on their stego images. In contrast, the difference obtained by
our scheme contains little visible information. The magnified difference
between secret and recovered images also suggests that the proposed
scheme can provide better recovered image quality. Table 2 further
quantitatively compares our RFSA with the other schemes using image
quality metrics. The results demonstrate that our scheme outperforms
the others in terms of hiding and recovering performance. We achieved
improvements of 3.23 dB/4.24 dB in PSNR and 0.002∕0.002 in SSIM
ompared to the second-best results. Similar enhancements are also
bserved in APD and LPIPS.

.3. Performance under distortion

JPEG compression is one of the primary causes of information loss
uring image communication. In our experiments, we evaluate the
obustness of RFSA against JPEG compression with various QFs. Fig. 3
epicts the visual effects of the recovered images obtained by our
cheme under JPEG compression with different QFs. Table 3 reports
he performance averaged over the test images. It can be observed that,
ven under the JPEG compression with 𝑄𝐹 = 55, our scheme still

maintains high-quality recovered images. It can achieve an averaged
PSNR-S of 24.96 dB and SSIM-S of 0.812 in this case.

We further conduct a comparative analysis of the embedding and
extraction performance between RFSA and compared schemes under
JPEG compression. It should be noted that the compared schemes are
not originally equipped with robust training against JPEG compression.
In view of this, we first remove the JPEG compression layer from our
scheme for a fair comparison. Fig. 4 visually compares our scheme
with others under JPEG compression with 𝑄𝐹 = 85. The results in-
dicate that these compared schemes suffer from significant information
loss of secret images. On the contrary, our scheme provides superior
recovered image quality. Table 4 presents a quantitative comparison
of these schemes, confirming the robustness of our scheme to JPEG
compression.

Then we introduce JPEG compression distortion layers into all these
schemes. This enabled these schemes to be trained robustly against
JPEG compression. With the robust training, we obtained fine-tuned
ABDH+, UDH+, CAIS+, DAH+, and our scheme RFSA+. Fig. 5 presents
the visual comparison of RFSA+ with the other fine-tuned schemes
under JPEG compression with 𝑄𝐹 = 85. It can be observed that
the compared ones still exhibit visible color distortions, blurring, and
blocky artifacts on the recovered images. Contrarily, our scheme is
more effective in reconstructing image details and smooth regions,
resulting in images that closely resemble the original secret image. We
further conduct a comparison of the quality of our scheme and other
fine-tuned schemes under JPEG compression with different QFs, as
listed in Table 5. It suggests that our scheme outperforms the others un-
der all JPEG compression distortions. As a result, the network structure
in our scheme can provide strong robustness to JPEG compression.

However, due to the lack of robust design against other channel
disturbances, RFSA is not effective in the face of other distortions. For
example, when subjected to Gaussian noise with a standard deviation
of 𝜎 = 2, the PSNR value of the recovered image reaches only 21.57 dB,
while the SSIM metric drops to 0.816.

4.4. Ablation study

Effect of modules and losses. Here, we primarily delve into the efficacy
of the proposed spatial encoder module, frequency encoder module, fre-
quency loss, and perceptual loss. We juxtapose them with the baseline
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Fig. 2. Visual comparison of RFSA without JPEG compression distortion with ABDH [7], UDH [35], CAIS [14], and DAH [31]. To account for the difference between the original
image and the generated image, the pixel-level residuals are magnified by a factor of 10.
Fig. 3. The visual effect of recovered images by our scheme under JPEG compression with different QFs.
Table 2
Comparison with other schemes without JPEG compression distortion. The best and second-best results are marked in bold and underlined, respectively.
Method APD-C↓ PSNR-C↑ SSIM-C↑ LPIPS-C↓ APD-S↓ PSNR-S↑ SSIM-S↑ LPIPS-S↓

ABDH [7] 3.71 34.56 0.949 0.0108 4.82 31.84 0.933 0.0267
UDH [35] 2.35 39.13 0.985 0.0001 3.56 35.0 0.976 0.0136
CAIS [14] 2.61 38.12 0.981 0.0005 3.85 34.20 0.972 0.0055
DAH [31] 2.05 39.84 0.988 0.0009 2.71 37.19 0.987 0.0024
RFSA (Ours) 1.06 43.07 0.996 0.0001 1.73 41.43 0.989 0.0016
Table 3
Embedding and extraction performance under JPEG with different QFs.
QFs APD-C↓ PSNR-C↑ SSIM-C↑ LPIPS-C↓ APD-S↓ PSNR-S↑ SSIM-S↑ LPIPS-S↓

QF=95 3.22 35.22 0.985 0.0308 7.79 27.29 0.884 0.1469
QF=85 3.59 34.47 0.981 0.0351 8.12 26.89 0.871 0.1506
QF=75 3.77 34.19 0.972 0.0389 8.66 26.27 0.857 0.1655
QF=65 3.85 33.50 0.957 0.0407 8.83 25.43 0.836 0.1828
QF=55 4.06 32.86 0.943 0.0465 9.04 24.96 0.812 0.2033
6
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Fig. 4. Visual comparison of secret images recovered by our scheme and other schemes under JPEG compression with 𝑄𝐹 = 85.
Fig. 5. Visual comparison of secret images recovered by our scheme and other fine-tuned schemes under JPEG compression with 𝑄𝐹 = 85.
Table 4
Comparison with other schemes under different JPEG compression conditions. Value1/value2 represents the scores calculated from cover/stego and secret/recovered image pairs
using the corresponding index.

QFs ABDH [7] UDH [35] CAIS [14] DAH [31] RFSA(Ours)

PSNR-C/-S↑ SSIM-C/-S↑ PSNR-C/-S↑ SSIM-C/-S↑ PSNR-C/-S↑ SSIM-C/-S↑ PSNR-C/-S↑ SSIM-C/-S↑ PSNR-C/-S↑ SSIM-C/-S↑

QF=85 34.19/7.42 0.949/0.552 38.47/9.35 0.984/0.486 37.60/13.28 0.980/0.625 39.72/10.23 0.988/0.563 42.55/17.56 0.994/0.758
QF=75 34.19/5.89 0.949/0.529 38.47/8.04 0.984/0.460 37.60/11.24 0.980/0.581 39.72/9.63 0.988/0.552 42.55/15.66 0.994/0.704
QF=65 34.19/5.82 0.949/0.526 38.47/5.78 0.984/0.424 37.60/8.76 0.980/0.552 39.72/8.18 0.988/0.531 42.55/13.64 0.994/0.639
Average 34.19/6.38 0.949/0.536 38.47/7.72 0.984/0.456 37.60/11.09 0.980/0.586 39.72/9.35 0.988/0.549 42.55/15.62 0.994/0.700
s
a
F
f
a

etwork. The comparative results are summarized in Table 6, where
patial means the spatial encoder module and Frequency means the
requency encoder module, and 𝑓 and 𝑝 represent the frequency
oss and the perceptual Loss, respectively. It can be observed that the
uality of the stego and recovered images produced by the frequency
ncoder module is demonstrably superior to that produced by the
7

a

patial encoder module when used independently. The best results
re achieved by combining the frequency domain and spatial domain.
urther, the best hiding and recovery performance is achieved when the
requency and spatial encoder module is utilized alongside frequency
nd perceptual losses as the training constraints. As a result, they play
pivotal role in determining the final outcomes.



Pattern Recognition 155 (2024) 110691X. Zeng et al.
Fig. 6. Comparison of image quality ablation under different weight factors.
Table 5
Comparison with other fine-tuned schemes under different JPEG compression conditions.

QFs ABDH+ [7] UDH+ [35] CAIS+ [14] DAH+ [31] RFSA+ (Ours)

PSNR-C/-S↑ SSIM-C/-S↑ PSNR-C/-S↑ SSIM-C/-S↑ PSNR-C/-S↑ SSIM-C/-S↑ PSNR-C/-S↑ SSIM-C/-S↑ PSNR-C/-S↑ SSIM-C/-S↑

QF=85 33.41/19.46 0.918/0.668 29.75/19.29 0.853/0.747 29.28/21.39 0.907/0.826 31.92/23.75 0.952/0.776 34.47/26.89 0.981/0.871
QF=75 32.45/18.55 0.909/0.653 29.47/18.76 0.838/0.722 28.64/20.86 0.881/0.817 31.26/23.12 0.945/0.768 34.19/26.27 0.972/0.857
QF=65 31.86/16.61 0.900/0.639 28.93/17.57 0.829/0.670 27.73/19.43 0.870/0.788 30.93/22.56 0.938/0.738 33.50/25.43 0.957/0.836
Average 32.57/18.20 0.909/0.653 29.38/18.54 0.840/0.713 28.55/20.56 0.886/0.810 31.37/23.14 0.945/0.760 34.05/26.19 0.970/0.854
Table 6
Ablation study for different modules.

Spatial Frequency 𝑓 𝑝 APD-C/-S↓ PSNR-C/-S↑ SSIM-C/-S↑ LPIPS-C/-S↓

Clean

✗ ✓ ✗ ✗ 2.14/3.94 39.47/38.13 0.985/0.971 0.0027/0.0038
✓ ✗ ✗ ✗ 2.46/3.14 38.18/36.26 0.979/0.950 0.0042/0.0066
✓ ✓ ✗ ✗ 1.95/2.90 40.72/39.31 0.990/0.974 0.0017/0.0024
✓ ✓ ✓ ✗ 1.58/2.32 41.63/40.20 0.993/0.981 0.0011/0.0020
✓ ✓ ✓ ✓ 1.06/1.73 43.07/41.43 0.996/0.989 0.0001/0.0016

QF=85

✗ ✓ ✗ ✗ 4.72/16.07 30.32/20.45 0.923/0.784 0.1065/0.2982
✓ ✗ ✗ ✗ 5.44/23.73 28.93/17.75 0.881/0.729 0.1616/0.3247
✓ ✓ ✗ ✗ 3.83/11.47 32.18/24.68 0.952/0.808 0.0729/0.2361
✓ ✓ ✓ ✗ 3.66/9.84 33.37/25.22 0.975/0.826 0.0462/0.1798
✓ ✓ ✓ ✓ 3.59/8.12 34.47/26.89 0.985/0.884 0.0351/0.1506
Table 7
Ablation study for the effect of different attention masks.

Configuration Clean QF=85 QF=75 QF=65

PSNR-C/-S↑ SSIM-C/-S↑ PSNR-C/-S↑ SSIM-C/-S↑ PSNR-C/-S↑ SSIM-C/-S↑ PSNR-C/-S↑ SSIM-C/-S↑

Without 𝑀 ⋅ 40.91/37.47 0.982/0.974 31.89/22.81 0.938/0.774 31.28/22.19 0.936/0.757 30.65/21.87 0.914/0.749
Only 𝑀 𝑗𝑝𝑔 42.02/40.04 0.988/0.980 32.49/24.51 0.956/0.867 32.27/24.26 0.948/0.825 32.04/23.84 0.943/0.791
Only 𝑀 𝑗𝑛𝑑 41.78/39.02 0.986/0.981 32.05/23.95 0.943/0.795 31.77/23.56 0.941/0.786 31.12/23.02 0.929/0.763
Only 𝑀𝑎𝑏𝑑ℎ 42.53/40.90 0.990/0.984 33.38/24.23 0.970/0.810 33.01/23.98 0.965/0.785 32.65/23.53 0.956/0.770
Fully 𝑀 ⋅ 43.07/41.43 0.996/0.989 34.47/26.89 0.981/0.871 34.19/26.27 0.972/0.857 33.50/25.43 0.957/0.812
8
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Fig. 7. Examples of the attention masks. The quality factor for JPEG is set to 𝑄𝐹 = 85.

Effect of weight factors. We investigate the impact of various weight
factors in Eq. (12) on image quality. 𝜆1, 𝜆2, 𝜆3, and 𝜆4 correspond
to the loss weights of the hiding process, recovery process, visual
perception, and frequency coefficient similarity, respectively. Fig. 6(a)
demonstrates that increasing 𝜆1 improves the visual quality of the stego
image, but significantly decreases the quality of the recovered image.
Conversely, Fig. 6(b) illustrates the opposite effect of 𝜆2. Moreover,
Fig. 6(c) and (d) reveal that excessively large or small values of 𝜆3 and
𝜆4 have a substantial impact on image quality. The optimal balance of
these weights relies on the specific requirements of the application. This
paper takes into account the image quality of both stego and recovered
images. Taking 𝜆1 as an example, search progressively within the range
[0.1, 10] while keeping the other weights constant. Therefore, we choose
𝜆1 = 1 to obtain the best trade-off. Finally, we choose 𝜆1 = 1, 𝜆2 = 1,
𝜆3 = 0.75, and 𝜆4 = 1.25.

Effect of image attention masks. Ablation experiments are conducted to
investigate the impact of attention selection in the attention feature
extraction module. Fig. 7 illustrates some examples of attention masks
for a cover image, including the cover image itself, as well as the
JPEG, JND, and ABDH attention masks, from left to right. We compare
the effect of these attentions by varying the input of the frequency
and spatial encoder module. As shown in Table 7, inputting JPEG and
JND attention masks can effectively improve the quality of recovered
images, and enhance robustness against JPEG compression. On the
other hand, ABDH attention primarily help ensure the quality of stego
images. The best hiding and recovery performance is achieved when all
attentions are utilized simultaneously.

5. Conclusion

Convert transmitting a secret image can be a challenging task,
especially when dealing with a carrier image of the same size and the
presence of interference of JPEG compression in the channel. In this
work, we propose an end-to-end image hiding network called RFSA
for robust covert image communication over the Internet. This scheme
incorporates an attention generation module to balance impercepti-
bility, recovered image quality, and resistance to JPEG compression.
Especially, it outputs three attention masks: the JPEG attention mask
that enhances robustness against compression, the JND attention mask
that balances imperceptibility and embedding strength, and the ABDH
attention mask that improves imperceptibility. Furthermore, both fre-
quency and spatial domains are considered in the encoder module. By
9

using multiple attention masks to guide the embedding of the secret
image in both frequency and spatial encoders, the proposed technique
can select regions that reduce distortion. This provides effective pro-
tection of the structural and perceptual quality of the image and better
resists JPEG compression while ensuring the imperceptibility of the
proposed method. In comparison to existing state-of-the-art methods,
our method exhibits superior hiding and recovery performance without
channel distortion. The PSNR values of the stego and recovered image
can achieve 43.07 dB and 41.43 dB, respectively. The visual quality of
the recovered image can also reach 26.19 dB on average in JPEG lossy
channels. The high PSNR value and the satisfactory visual quality of
the image indicate that the proposed method is effective in controlling
the distortion and loss of the image. A limitation of this method lies
in the manual design and selection of injected attentions, which di-
minishes the effectiveness of the proposed RFSA when confronted with
alternative channel disturbances. Furthermore, the absence of robust
design against disturbances from other channels results in suboptimal
resistance against such disturbances. In the future, we will focus on
automatically learning the attentions tailored to other lossy channels,
such as the rounding effects in the lossy compression. Additionally,
enhancing the payload capacity of robust CIC through multiple secret
image hiding remains a task for improvement.
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